
Unit 4 Applications with Files, Templates

1
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Files - Introduction

A file is collection of data or information that has a name, called the filename. Files are

stored in secondary storage devices such as floppy disks and hard disks.

The main memories of a computer such as random access memory or read-only memory

are not used for the storage of files. This is because the main memory of a computer is limited

and cannot hold a large amount of data. Another reason is that the main memory is volatile; that

is, when the computer is switched off, the contents of RAM vanish.

Fig. Communication between program, file, and output device

As shown in Figure, the data read from the keyboard are stored in variables. Variables are

created in RAM (type of primary memory).. It is also possible to read data from secondary

storage devices. When data are read from such devices, they are placed in the RAM and then,

console I/O operations are used to transfer them to the screen. RAM is used to hold data

temporarily.

Unit 4 Applications with Files, Templates

2
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Data communication can be performed between programs and output devices or between

files and programs. File streams are used to carry the communication among the above-

mentioned devices. The stream is nothing but a flow of data in bytes in sequence. If data were

received from input devices in sequence, then it is called a source stream, and if the data were

passed to output devices, then it is called a destination stream. Figure shows the input and output

streams. The input stream brings data to the program, and the output stream collects data from

the program. In another way, the input stream extracts data from the file and transfers it to the

program; whereas the output stream stores the data in the file provided by the program.

 Fig. Input and output streams

File Stream Classes

A stream is nothing but a flow of data. In the object-oriented programming, the streams are

controlled using the classes.

Unit 4 Applications with Files, Templates

3
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

The ios class is the base class. All other classes are derived from the ios class. These

classes contain several member functions that perform input and output operations. The

streambuf class has low-level routines and provides interface to physical devices.

The istream and ostream classes control input and output functions, respectively. The

ios is the base class of these two classes. The functions get(), getline(), and read() and overloaded

extraction operators (>>) are defined in the istream class. The functions put(), write(), and

overloaded insertion operators (<<) are defined in the ostream class. The iostream class is also

a derived class. It is derived from istream and ostream classes. The classes ifstream, ofstream and

fstream are derived from istream ,ostream and iostream respectively. These classes handle

input and output with the disk files. The header file fstream.h contains a declaration of ifstream,

ofstream, and fstream classes, including isotream.h file. This file should be included in the

program while doing disk I/O operations.

Details of File Stream Classes:

Class Description

filebuf
Sets the file buffers to read and write. It holds constant openprot used in
function open() and close() as a member.

fstreambase
The fstreambase acts as a base class for fstream, ifstream, and ofstream.
The functions such as open() and close() are defined in fstreambase

ifstream
Provides input operations on files. Contains open() with default input
mode. Inherits the functions as get(), getline(), seekg(), tellg(), and
read() from istream class

ofstream
Provides output operations on files. Contains open() with default output
mode. Inherits the functions as put(), seekp(), write(), and tellp()from
ostream class

fstream Provides support for simultaneous input/output file stream class. Inherits
all functions from istream and ostream classes through iostream.

Unit 4 Applications with Files, Templates

4
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Steps of File Operations

Before performing file operations, it is necessary to create a file. The operation of a file

involves the following basic activities:

 Specifying suitable file name

 Opening the file in desired mode

 Reading or writing the file (file processing)

 Detecting errors

 Closing the file

File Opening: In order to perform operations, we have to create a file stream object and

connecting it with the file name. The classes ifstream, ofstream, and fstream can be used for

creating a file stream. The selection of the class is according to the operation that is to be carried

out with the file. The operation may be read or write. Two methods are used for the opening of a

file. They are as follows:

 Constructor of the class

 Member function open()

1. Constructor of the class:

When objects are created, a constructor is automatically executed, and objects are

initialized. In the same way, the file stream object is created using a suitable class, and it is

initialized with the file name. The constructor itself uses the file name as the fist argument

and opens the file. The class ofstream creates output stream objects, and the class ifstream

creates input stream objects.

Consider the following examples:

a) ofstream out (“text”);
b) ifstream in(“list”);

In the statement (a), out is an object of the class ofstream; file name text is opened, and

data can be written to this file. The file name text is connected with the object out. Similarly,

in the statement (b), in is an object of the class ifstream. The file list is opened for input and

Unit 4 Applications with Files, Templates

5
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

connected with the object in. It is possible to use these file objects in program statements

such as stream objects. Consider the following statements:

 cout<<“One Two Three”;

 The above statement displays the given string on the screen.

out<<“One Two Three”;

 The above statement writes the specified string into the file pointed by the object out as

shown in Figure. The insertion operator << has been overloaded appropriately in the ostream

class to write data to the appropriate stream.

 Similarly, in the following statements,

 in>>string; // Reads data from the file into string where string is a character array
in>>num; // Reads data from the file into num where num is an integer variable

the in object reads data from the file associated with it, as shown in figure. For reading
data from a file, we have to create an object of the ifstream class.

Unit 4 Applications with Files, Templates

6
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/* Write a program to open an output file using fstream class.*/

#include <iostream>
#include <fstream>
using namespace std;
int main()
{

 char name[15];
 int age;
 ofstream out("text");
 cout<<"Enter Name:"<<endl;
 cin>>name;
 cout<<"Enter Age:"<<endl;
 cin>>age;
 out<<name<<"\t";
 out<<age <<endl;
 out.close(); // File is closed
 return 0;

}

Explanation: In the above program, the statement ofstream out (“text”) text is
opened and connected with the object out.

Contents of the file text: pvpsit 15

/* Write a program to read data from file using object of ifstream class.*/

#include <iostream>
#include <fstream>
using namespace std;

int main() {
 string name;
 int age;
 ifstream in("text"); // Opens a file in read mode
 in>>name;
 in>>age;
 cout<<"Name:"<<name<<endl;
 cout<<"Age:"<<age;
 in.close();
 return 0;
}
Output:

pvpit
15

Unit 4 Applications with Files, Templates

7
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/* Write a program to write and read data from file using object of fstream class.*/

#include <iostream>
#include <fstream>
using namespace std;

int main() {
 string name;
 int age;
 fstream f("text");
 cout<<"Enter Name:"<<endl;
 cin>>name;
 cout<<"Enter Age:"<<endl;
 cin>>age;
 f<<name<<"\t";
 f<<age <<endl;

 f>>name;
 f>>age;
 cout<<"\nName:"<<name<<endl;
 cout<<"Age:"<<age;
 f.close();
 return 0;
}

In the above programs, the file associated with the object are automatically closed

when the stream object goes out of scope. In order to explicitly close the file, the

following statement is used:

out.close();
in.close();

Here, out is an object, and close() is a member function that closes the file

connected with the object out. Similarly, the file associated with the object in is closed by

the member function close().

Unit 4 Applications with Files, Templates

8
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 /* Write a program to write and read text in a file. Use ofstream and ifstream classes.*/

#include <iostream>
#include <fstream>
using namespace std;
int main()
{

string name;
 int age;
 ofstream out("text");
 cout<<"Enter Name:"<<endl;
 cin>>name;
 cout<<"Enter Age:"<<endl;
 cin>>age;
 out<<name<<"\t";
 out<<age <<endl;
 out.close(); // File is closed
 ifstream in ("text");
 in>>name;
 in>>age;
 cout<<"\nName:"<<name<<endl;
 cout<<"Age:"<<age;
 in.close();
 return 0;
} Output: Enter Name : PVPSIT

Enter Age : 24
Name : PVPSIT
Age : 24

2. The open() function

The open() function is used to open a file, and it uses the stream object. The

open() function has two arguments. First is the file name, second is the mode and this is

optional. The mode specifies the purpose of opening a file; that is, read, write, append,

and so on. If we don’t specify any mode default will be considered.

In the following examples, the default mode is considered. The default values for

ifstream is ios::in reading only and for fstream is ios::out writing only.

Unit 4 Applications with Files, Templates

9
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 (A) Opening file for write operation

ofstream out; // Creates stream object out
out.open (“marks”); // Opens file and links with the object out
out.close() // Closes the file pointed by the object out
out.open (“result”); // Opens another file

(B) Opening file for read operation
 ifstream in; // Creates stream object in

 in.open (“ marks”); // Opens file and link with the object in
in.close() ; // Closes the file pointed by object in

/* Write a program to open the file for writing and reading purposes. Use open()
function.*/

 #include <iostream>
#include <fstream>
using namespace std;

int main() {
 string name;
 int age;
 ofstream out;
 out.open("Text");
 cout<<"Enter Name:"<<endl;
 cin>>name;
 cout<<"Enter Age:"<<endl;
 cin>>age;
 out<<name<<"\t";
 out<<age <<endl;
 out.close(); // File is closed
 ifstream in;
 in.open("Text");
 in>>name;
 in>>age;
 cout<<"\nName:"<<name<<endl;
 cout<<"Age:"<<age;
 in.close();
 return 0;
} Output:

Enter Name: PVPSIT
Enter Age: 21
Name:PVPSIT
Age:21

Unit 4 Applications with Files, Templates

10
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/* Program to create a file consisting of ‘n’ employee’s details and print employee
infromation.*/

#include <iostream>
#include<fstream>
#include<iomanip>
using namespace std;
class emp{
 int empno;
 string name;
 float sal;
public:
 void get();
 void display();
};
void emp::get()
{
 cout<<"Enter empno,name,salary"<<endl;
 cin>>empno>>name>>sal;
}
void emp::display()
{
 cout<<"\t"<<empno<<"\t"<<name<<"\t"<<sal<<endl;
}
int main() {
 ofstream fout;
 emp e;
 int i,n;
 fout.open("emp.txt",ios::out);
 cout<<"Enter Number of records";
 cin>>n;
 cout<<"Enter "<<n<<"employee details";
 for(i=1;i<=n;i++)
 {
 e.get();
 fout.write((char *)&e,sizeof(e));
 }
 fout.close();
 cout<<"writing finished"<<endl;
 cout<<"The data in the file is"<<endl;

 ifstream fin;
 fin.open("emp.txt",ios::in);
 while(fin)
 {

 fin.read((char *)&e,sizeof(r));

Unit 4 Applications with Files, Templates

11
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 e.display();
 }
 fin.close();
 return 0;

}

Checking for Errors

Various errors can be made by the user while performing a file operation. Such errors

should be reported in the program to avoid further program failure. When a user attempts to read

a file that does not exist or opens a read-only file for writing purpose, the operation fails in such

situations. Such errors should be reported, and proper actions have to be taken before further

operations are performed.

The ! (logical negation operator) overloaded operator is useful for detecting errors. It is a

unary operator and, in short, it is called a not operator. The (!) not operator can be used

with objects of stream classes. This operator returns a non-zero value if a stream error occurs

during an operation. Consider the following program:

/*Write a program to check whether the file is successfully opened or not.*/

 #include<fstream>
 #include<iostream>
 using namespace std;

 int main()
 {

 ifstream in ("text");
 if (!in) cerr <<"File is not opened";
 else cerr <<"File is opened";
 return 0;

 }

 Output: File is not opened

Unit 4 Applications with Files, Templates

12
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 Finding End of a File

While reading data from a file, it is necessary to find where the file ends, that is, the end
of the file. The programmer cannot predict the end of the file. If in a program, while reading the
file, the program does not detect the end of the file, the program drops in an infinite loop. To
avoid this, it is necessary to provide correct instructions to the program that detects the end of the
file. Thus, when the end of the file is detected, the process of reading data can be easily
terminated. The eof() member function() is used for this purpose.

The eof() stands for the end of the file. It is an instruction given to the program by the
operating system that the end of the file is reached. It checks the ios::eofbit in the ios::state. The
eof() function returns the non-zero value, when the end of the file is detected; otherwise, it is
zero.

/*Write a program to read and display contents of file. Use eof() function.*/

#include <iostream>
#include<fstream>
using namespace std;
int main()
{
 ofstream ofs;
 char ch;
 ofs.open("hello.txt");
 cout<<"Enter some data at end type q(QUIT)"<<endl;
 cin>>ch;
 while(ch!='q')
 {
 ofs<<ch;
 cin>>ch;
 }
 ofs.close();
 ifstream ifs;
 ifs.open("hello.txt");
 cout<<"The Data from the file"<<endl;
 while(!ifs.eof())
 {
 ifs>>ch;
 cout<<ch;
 }
 ifs.close();
 return 0;
}

Unit 4 Applications with Files, Templates

13
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Error Handling Functions

Errors may occur due to

1. An attempt to read a file that does not exist
2. The file name specified for opening a new file may already exist
3. An attempt to read the contents of a file when the file pointer is at the end of the file
4. Insufficient disk space
5. Invalid file name specified by the programmer
6. A file opened may be already opened by another program
7. An attempt to open the read-only file for writing operation
8. Device error

The stream state member from the class ios receives values from the status bit of the

active file. The class ios also contains many different member functions. These functions read

the status bit of the file when an error occurred during program execution.

All streams such as ofstream, ifstream, and fstream contain the state connected with

them.

Fig. Status bits

eof bit End of file encountered.

fail bit Operation unsuccessful

bad bit Illegal operation due to wrong size of buffer

hard fail Critical error

Unit 4 Applications with Files, Templates

14
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Error Trapping Functions

Functions Working and return value

fail() Returns non-zero value if an operation is unsuccessful. This is carried out
by reading the bits ios::fail bit, ios:: bad bit, and ios::hard bit.

eof() Returns non-zero value when the end of the file is detected; otherwise, it
returns zero. This is carried out by checking ios::eof bit.

bad() Returns non-zero value when an error is found in the operation. The
ios::bad bit is checked.

good() Returns non-zero value if no error occurred during the file operation, that
is, no status bits were set.

rdstate() Read the stream state and returns the values.

clear(int=0) To clear particular bit(s), clear() clears all the bits. clear(ios::fail) clears
only fail bit.

/* Write a C++ program to display status of various errors trapping functions. */

#include <iostream>
#include<fstream>
using namespace std;

int main() {
 ifstream in;
 in.open("suresh1.dat");
 cout<<”File”<<in<<endl;
 cout<<"rdstate:"<<in.rdstate()<<endl;
 cout<<"fail():"<<in.fail()<<endl;
 cout<<"eof():"<<in.fail()<<endl;
 cout<<"bad():"<<in.bad()<<endl;
 cout<<"good():"<<in.good()<<endl;
 in.close();
 return 0;
}

Output:

 File:0
 rdstate:4
 fail():1
 eof():1
 bad():0
 good():0

Explanation: In the above program, an attempt is made to open a non-existent file. The if
statement checks the value of the object in. The specified file does not exist; hence, it displays
the message 0 (File not found). The program also displays the values of various bits using the
functions good(), eof(), bad(), fail(), and rdstate() error trapping functions.

Unit 4 Applications with Files, Templates

15
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

FILE OPENING MODES

In previous examples, we have learned how to open files using constructors and the open()
function using the objects of ifstream and ofstream classes. The opening of the file also
involves several modes depending on the operation to be carried out with the file. The open()
function has the following two arguments:

Syntax of open() function

object.open (“file_ name”, mode);

Here, the object is a stream object, followed by the open() function. The bracket of the open
function contains two parameters. The first parameter is the name of the file, and the second is
the mode in which the file is to be opened. In the absence of a mode parameter, a default
parameter is considered. The file mode parameters are as shown in Table 16.1.

Table 16.1 File modes

Mode parameter Operation
ios::app Adds data at the end of file
ios::ate After opening character pointer goes to the end of file
ios:: binary Binary file
ios::in Opens file for reading operation
ios::nocreate Opens unsuccessfully if the file does not exist
ios::noreplace Opens files if they are already present
ios::out Open files for writing operation
ios::trunc Erases the file contents if the file is present

1. The mode ios::out and ios::trunc are the same. When ios::out is used, if the
specified file is present, its contents will be deleted (truncated). The file is treated as a
new file.

2. When the file is opened using ios:app and ios::ate modes, the character pointer is
set to the end of the file. The ios:: app lets the user add data at the end of the file,
whereas the ios:ate allows the user to add or update data anywhere in the file. If the
given file does not exist, a new file is created. The mode ios::app is applicable to the
output file only.

Unit 4 Applications with Files, Templates

16
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

3. The ifstream creates an input stream and an ofstream output stream. Hence, it is not
compulsory to give mode parameters.

4. While creating an object of the fstream class, the programmer should provide the
mode parameter. The fstream class does not have the default mode.

5. The file can be opened with one or more mode parameters. When more than one
parameter is necessary, a bit-wise OR operator separates them. The following statement
opens a file for appending. It does not create a new file if the specified file is not present.

File opening with multiple attributes

out.open (“file1”, ios::app | ios:: nocreate)

16.9 Write a program to open a file for writing and store float numbers in it.

#include<fstream.h>

#include<iomanip.h>

void main()

{

float a=784.52, b=99.45,c =12.125;

ofstream out (“float.txt”,ios::trunc);

out<<setw(10)<<a<<endl;

out<<setw(10)<<b<<endl;

out<<setw(10)<<c<<endl;

}

Explanation: In the above program, the file “float.txt” is opened. If the file already exists,
its contents are truncated. The three float numbers are written in the file.

Unit 4 Applications with Files, Templates

17
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

16.10 Write a program to open a file in binary mode. Write and read the data.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[32];

out.open (“text”,ios::out | ios::binary);

cout<<“\n Enter text”<<endl;

cin.getline(data,32);

out <<data;

out.close();

ifstream in;

in.open(“text”, ios::in | ios::binary);

cout<<endl<<“Contents of the file \n”;

char ch;

{

ch= in.get();

cout<<ch;

}

Unit 4 Applications with Files, Templates

18
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

return 0;

}

OUTPUT

Programming In ANSI and TURBO-C

Contents of the file

Programming In ANSI and TURBO-C

Explanation: The above program is similar to the previous one. The only difference is that here
files are opened in binary mode.

16.7 FILE POINTERS AND MANIPULATORS

All file objects hold two file pointers that are associated with the file. These two file pointers
provide two integer values. These integer values indicate the exact position of the file pointers in
the number of bytes in the file. The read or write operations are carried out at the location
pointed by these file pointers .One of them is called get pointer (input pointer),
and the second one is called put pointer (output pointer). During reading and
writing operations with files, these file pointers are shifted from one location to another in the
file. The (input) get pointer helps in reading the file from the given location, and the
output pointer helps in writing data in the file at the specified location. When read and write
operations are carried out, the respective pointer is moved.

While a file is opened for the reading or writing operation, the respective file pointer input or
output is by default set at the beginning of the file. This makes it possible to perform the reading
or writing operation from the beginning of the file. The programmer need not explicitly set the
file pointers at the beginning of files. To explicitly set the file pointer at the specified position,
the file stream classes provides the following functions:

Read mode: When a file is opened in read mode, the get pointer is set at the beginning of the
file, as shown in Figure 16.7. Hence, it is possible to read the file from the first character of the
file.

Unit 4 Applications with Files, Templates

19
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Fig. 16.7 Status of get pointer in read mode

Write Mode: When a file is opened in write mode, the put pointer is set at the beginning of the
file, as shown in Figure 16.8. Thus, it allows the write operation from the beginning of the file.
In case the specified file already exists, its contents will be deleted.

Fig. 16.8 Status of put pointer in write mode

Append Mode: This mode allows the addition of data at the end of the file. When the file is
opened in append mode, the output pointer is set at the end of the file, as shown in Figure 16.9.
Hence, it is possible to write data at the end of the file. In case the specified file already exists, a
new file is created, and the output is set at the beginning of the file. When a pre-existing file is
successfully opened in append mode, its contents remain safe and new data are appended at the
end of the file.

Unit 4 Applications with Files, Templates

20
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Fig. 16.9 Status of put pointer in append mode

C++ has four functions for the setting of points during file operation. The position of the curser
in the file can be changed using these functions. These functions are described in Table 16.2.

Table 16.2 File pointer handling functions

Function Uses Remark
seekg() Shifts input (get) pointer to a given location. Member of ifstream class
seekp() Shifts output (put) pointer to a given location. Member of ofstream class
tellg() Provides the present position of the input pointer. Member of ifstream class
tellp() Provides the present position of the output pointer. Member of ofstream class

As given in Table 16.2, the seekg() and tellg() are member functions of the ifstream
class. All the above four functions are present in the class fstream. The class fstream is
derived from ifstream and ofstream classes. Hence, this class supports both input and
output modes, as shown in Figure 16.10. The seekp() and tellp() work with the put
pointer, and tellg() and seekg() work with the get pointer.

Unit 4 Applications with Files, Templates

21
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Fig. 16.10 Derivation of fstream class

Now consider the following examples:

16.11 Write a program to append a file.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

out <<data;

Unit 4 Applications with Files, Templates

22
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

out.close();

out.open (“text”, ios::app);

cout<<“\n Again Enter text”<<endl;

cin.getline (data,25);

out<<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

while (in.eof()==0)

{

in>>data;

cout<<data;

}

return 0;

}

OUTPUT

Enter text

C-PLUS-

Again Enter text

PLUS

Unit 4 Applications with Files, Templates

23
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Contents of the file

C-PLUS-PLUS

Explanation: In the above program the file text is opened for writing, that is, output. The text
read through the keyboard is written in the file. The close() function closes the file. Once
more, the same file is opened in the append mode, and data entered through the keyboard are
appended at the end of the file, that is, after the previous text. The append mode allows the
programmer to write data at the end of the file. The close() function closes the file. The same
file is opened using the object of the ifstream class for reading purpose. The while loop is
executed until the end of the file is detected. The statements within the while loop read text
from the file and display it on the screen.

16.12 Write a program to read contents of the file. Display the position of the get pointer.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[32];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,32);

out <<data;

out.close();

Unit 4 Applications with Files, Templates

24
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

int r;

while (in.eof()==0)

{

in>>data;

cout<<data;

r=in.tellg();

cout<<“ (“<<r <<“)”;

}

return 0;

}

OUTPUT

Enter text

Programming In ANSI and TURBO-C

Contents of the file

Programming (11)In (14)ANSI (19)and (23)TURBO-C (31)

Explanation: The above program is similar to the previous one. In addition here, the function
tellg() is used. This function returns the current file pointer position in the number of bytes
from the beginning of the file. The number shown in brackets in the output specifies the position
of the file pointer from the beginning of the file. The same program is illustrated below using the
binary mode.

Unit 4 Applications with Files, Templates

25
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

16.8 MANIPULATORS WITH ARGUMENTS

The seekp() and seekg() functions can be used with two arguments. Their formats with two
arguments are as follows:

seekg(offset, pre_position);

seekp(offset, pre_position);

The first argument offset specifies the number of bytes the file pointer is to be shifted from
the argument pre_position of the pointer. The offset should be a positive or negative
number. The positive number moves the pointer in the forward direction, whereas the negative
number moves the pointer in the backward direction. Fig 16.11 provides the status of pre-
position arguments. The pre_position argument may have one of the following values:

 ios::beg Beginning of the file
 ios::cur Current position of the file pointer
 ios::end End of the file

Fig. 16.11 Status of pre-position arguments

In the above figure, the status of ios::beg and ios::end is shown. The status of
ios::cur cannot be shown to be similar to ios::beg or ios::end. The ios::cur
means the present position of the file pointer. The ios::beg and ios::end may be referred
to as ios::cur. Suppose the file pointer is in the middle of the file and you want to read the
file from the beginning, you can set the file pointer at the beginning using ios::beg.
However, if you want to read the file from the current position, you can use the option
ios::cur.

The seekg() function shifts the associated file’s input (get) file pointer. The seekp()
function shifts the associated file’s output (put) file pointer. Table 16.3 describes a few pointer
offsets along with their working.

Unit 4 Applications with Files, Templates

26
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Table 16.3 File pointer with its arguments

Seek option Working
in.seekg (0,ios :: beg) Go to the beginning of file
in.seekg (0,ios :: cur) Rest at the current position
in.seekg (0,ios ::end) Go to the end of file
in.seekg (n,ios :: beg) Shift file pointer to n+1 byte in the file
in.seekg (n,ios :: cur) Go front by n byte from the current position
in.seekg (-n,ios :: cur) Go back by n bytes from the present position.
in.seekg (-n,ios::end); Go back by n bytes from the end of file

In Table 16.3, in is an object of the ifstream class.

16.13 Write a program to write text in the file. Read the text from the file from end of file.
Display the contents of file in reverse order.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

Unit 4 Applications with Files, Templates

27
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

out <<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Reverse Contents of the file \n”;

in.seekg(0,ios::end);

int m=in.tellg();

char ch;

for (int i=1;i<=m;i++)

{

in.seekg(-i,ios::end);

in>>ch;

cout<<ch;

}

return 0;

}

OUTPUT

Enter text

Visual_C_+_+

Reverse Contents of the file

+_+_C_lausiV

Unit 4 Applications with Files, Templates

28
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Explanation: In the above program, file text is opened in the output mode, and the string
entered is written to the file. Again, the same file is opened for reading purpose. The statement
in.seekg (0,ios::end); moves the get pointer at the end of the file. The tellg()
function returns the current position of the file pointer in the file. Hence, the file pointer is set to
the end of the file. The tellg() returns the number of last bytes, that is, the size of the file in
bytes, and it is stored in the integer variable m. The for loop executes from 1 to m. The
statement in.seekg (-i, ios::end) reads the ith byte from the end of the file. The
statement in>>ch reads the character from the file indicated by the file pointer. The cout
statement displays the read character on the screen. Thus, the contents of the file are displayed in
reverse order.

16.14 Write a program to enter a text and again enter a text and replace the first word of
the first text with the second text. Display the contents of the file.

#include<fstream.h>

#include<conio.h>

int main()

{

clrscr();

ofstream out;

char data[25];

out.open (“text”,ios::out);

cout<<“\n Enter text”<<endl;

cin.getline(data,25);

out <<data;

out.seekp(0,ios::beg);

cout<<“\nEnter text to replace the first word of first text:”;

Unit 4 Applications with Files, Templates

29
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cin.getline(data,25);

out<<data;

out.close();

ifstream in;

in.open(“text”, ios::in);

cout<<endl<<“Contents of the file \n”;

while (in.eof()!=1)

{ in>>data;

cout<<data;

}

return 0;

}

OUTPUT

Enter text

Visual C++

Enter text to replace the first word of first text : Turbo-Contents of the file

Turbo-C++

Explanation: In the above program, the text is entered and written in the file text. This
process is explained in the previous examples. Here again, the statement
out.seekp(0,ios::beg); sets the file pointer (put pointer) at the beginning of the file.
Again, text is entered and written at the current file pointer position. The previous text is
overwritten.

16.9 SEQUENTIAL ACCESS FILES

Unit 4 Applications with Files, Templates

30
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

C++ allows the file manipulation command to access the file sequentially or randomly. The data
of the sequential file should be accessed sequentially, that is, one character at a time. In order to
access the nth number of bytes, all previous characters are read and ignored. There are a number
of functions to perform read and write operations with the files. Some functions read /write
single characters, and some functions read/write blocks of binary data. The put() and get()
functions are used to read or write a single character, whereas write() and read() are used
to read or write blocks of binary data.

put() and get() functions

The function get() is a member function of the class fstream. This function reads a single
character from the file pointed by the get pointer, that is, the character at the current get pointer
position is caught by the get() function.

The function put() function writes a character to the specified file by the stream object. It is
also a member of the fstream class. The put() function places a character in the file
indicated by the put pointer.

16.15 Write a program to write and read string to the file using put() and get()
functions.

#include<fstream.h>

#include<conio.h>

#include<string.h>

int main()

{

clrscr();

char text[50];

Unit 4 Applications with Files, Templates

31
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<“\n Enter a Text:”;

cin.getline(text,50);

int l=0;

fstream io;

io.open(“data”, ios::in | ios::out);

while (l[text]!=‘\0’)

io.put(text[l++]);

io.seekg(0);

char c;

cout<<“\n Entered Text:”;

while (io)

{

io.get(c);

cout<<c;

}

return 0;

}

OUTPUT

Enter a Text : PROGRAMMING WITH C++

Entered Text : PROGRAMMING WITH C++

Unit 4 Applications with Files, Templates

32
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Explanation: In the above program, the file data is opened simultaneously in the read and
write mode. The getline() function reads the string through the keyboard and stores it in the
array text [50]. The statement io.put (text[l++]) in the first while loop reads one
character from the array and writes it to the file indicated by the stream object io. The first
while loop terminates when the null character is found in the text.

The statement io.seekg (0) sets the file pointer at the beginning of the file. In the second
while loop, the statement io.get(c) reads one character at a time from the file, and the
cout() statement displays the same character on the screen. The while loop terminates when
the end of the file is detected.

16.10 BINARY AND ASCII FILES

The insertion and extraction operators known as stream operators handle formatted data.
The programmer needs to format data in order to represent them in a suitable manner. The
description of formatted and unformatted data is given in Chapter 2. ASCII codes are used by the
I/O devices to share or pass data to the computer system, but the central processing unit (CPU)
manipulates the data using binary numbers, that is, 0 and 1. For this reason, it is essential to
convert the data while accepting data from input devices and displaying the data on output
devices. Consider the following statements:

cout<<k; // Displays value of k on screen

cin>>k; // Reads value for k from keyboard

Here, k is an integer variable. The operator << converts the value of the integer variable k into a
stream of ASCII characters. In the same manner, the << operator converts the ASCII characters
entered by the user into binary form. The data are entered through the keyboard, which is a
standard input device. For example, you entered 21. The stream operator >> gets ASCII codes of
the individual digits of the entered number 21, that is, 50 and 49. The ASCII codes of 2 and 1 are
50 and 49, respectively. The stream operator >> converts the ASCII value into its equivalent
binary format and assigns it to the variable k. The stream operator << converts the value of k
(21) that is stored in the binary format into its equivalent ASCII codes, that is, 50 and 49. Figure
16.12 shows a representation of integer numbers in ASCII and binary formats.

Unit 4 Applications with Files, Templates

33
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Fig. 16.12 Representation in binary and ASCII formats

16.16 Write a program to demonstrate that the data is read from the file using ASCII
format.

#include<fstream.h>

#include<constream.h>

int main()

{

clrscr();

char c;

ifstream in(“data”);

if (!in)

{

cerr<<“ Error in opening file.”;

return 1;

}

while (in.eof()==0)

{

Unit 4 Applications with Files, Templates

34
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<(char)in.get();

}

return 0;

}

OUTPUT

PROGRAMMING WITH ANSI AND TURBO-C

Explanation: In the above program, the data file is opened in read mode. The file already exists.
Using get() member function of the ifstream class, the contents of the file are read and
displayed. Consider the following statement:

cout<<(char)in.get();

The get() function reads data from the file in the ASCII format. Hence, it is necessary to
convert the ASCII number into an equivalent character. The typecasting format (char) converts
the ASCII number into an equivalent character. In case the conversion is not done, the output
would be as follows:

8082797182657777737871328773847232657883733265786832848582667967-1

The above displayed are ASCII numbers, and –1 at the end indicates the end of the file.

After typecasting, the original string will be as shown in the output.

The write() and read() functions

The data entered by the user are represented in the ASCII format. However, the computer can
understand only the machine format, that is, 0 and 1. When data are stored in the text, format

Unit 4 Applications with Files, Templates

35
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

numbers are stored as characters and occupy more memory space. The functions put() and
get()read/ write a character. The data are stored in the file in character format. If a large
amount of numeric data are stored in the file, they will occupy more space. Hence, using put()
and get()creates disadvantages.

This limitation can be overcome using write() and read() functions. The write() and
read()functions use the binary format of data while in operation. In the binary format, the data
representation is same in both the file and the system. Figure 16.12 shows the difference between
the ASCII and binary format. The bytes required to store an integer in text form depend on its
size, whereas in the binary format the size is fixed. The binary form is accurate and allows quick
read and write operations, because no conversion takes places during operations. The formats of
the write() and read() function are as given below.

in.read((char *) & P, sizeof(P));

out.write((char *) & P, sizeof(P));

These functions have two parameters. The first parameter is the address of the variable P. The
second is the size of the variable P in bytes. The address of the variable is converted into char
type. Consider the following program:

16.17 Write a program to perform read and write operations using write() and read()
functions.

#include<fstream.h>

#include<conio.h>

#include<string.h>

int main()

{

clrscr();

int num[]={100,105,110,120,155,250,255};

Unit 4 Applications with Files, Templates

36
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

ofstream out;

out.open(“01.bin”);

out.write((char *) & num, sizeof(num));

out.close();

for (int i=0;i<7;i++) num[i]=0;

ifstream in;

in.open(“01.bin”);

in.read((char *) & num, sizeof(num));

for (i=0;i<7;i++) cout<<num[i]<<“\t”;

return 0;

}

OUTPUT

100 105 110 120 155 250 255

Explanation: In the above program, the integer array is initialized with 7 integer numbers. The
file “01.bin” is opened. The statement out.write((char *) & num, sizeof
(num)) writes the integer array in the file. The &num argument provides the base address of the
array, and the second argument provides the total size of the array. The close() function
closes the file. Again, the same file is opened for reading purpose. Before reading the contents of
the file, the array is initialized to a zero that is not necessary. The statement in.read ((char
*) & num, sizeof (num)); reads data from the file and assigns them to the integer
array. The second for loop displays the contents of the integer array. The size of the file
“01.bin” will be 14 bytes, that is, two bytes per integer. If the above data are stored without
using the write() command, the size of the file will be 21 bytes.

Reading and writing class objects

The read() and write() functions perform read and write operations in a binary format that
is exactly the same as an internal representation of data in the computer. Due to the capabilities

Unit 4 Applications with Files, Templates

37
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

of these functions, large data can be stored in a small amount of memory. Both these functions
are also used to write and read class objects to and from files. During read and write operations,
only data members are written to the file, and the member functions are ignored. Consider the
following program:

16.18 Write a program to perform read and write operations with objects using write()
and read() functions.

#include<fstream.h>

#include<conio.h>

class boys

{

char name [20];

int age;

float height;

public:

void get()

{

cout<< “Name:”; cin>>name;

cout<< “Age:”; cin>>age;

cout<< “Height:”; cin>>height;

}

void show()

{

Unit 4 Applications with Files, Templates

38
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<“\n”<<name<<“\t”<<age <<“\t”<<height;

}

};

int main()

{

clrscr();

boys b[3];

fstream out;

out.open (“boys.doc”, ios::in | ios::out);

cout<<“\n Enter following information:\n”;

for (int i=0;i<3;i++)

{

b[i].get();

out.write ((char*) & b[i],sizeof(b[i]));

}

out.seekg(0);

cout<<“\n Entered information\n”;

cout<<“Name Age Height”;

for (i=0;i<3;i++)

{

out.read((char *) & b[i], sizeof(b[i]));

b[i].show();

}

Unit 4 Applications with Files, Templates

39
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

out.close();

return 0;

}

OUTPUT

Enter following information:

Name : Kamal

Age : 24

Height : 5.4

Name : Manoj

Age : 24

Height : 5.5

Name : Rohit

Age : 21

Height : 4.5

Entered information

Name Age Height

Kamal 24 5.4

Manoj 24 5.5

Rohit 21 4.5

Explanation: In the above program, the class boys contains data members’ name, age,
and height of char, int, and float type. The class also contains the member functions
get() and show()to read and display the data. In function main(), an array of three objects

Unit 4 Applications with Files, Templates

40
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

is declared, that is, b [3]. The file “boys.doc” is opened in the output and input mode to
write and read data. The first for loop is used to call the member function get(), and data
read via the get() function is written to the file by the write() function. The same method is
repeated while reading the data from the file. While reading data from the file, the read()
function is used, and the member function show() displays the data on the screen.

16.11 RANDOM ACCESS OPERATION

Data files always contain a large amount of information, and the information always changes.
The changed information should be updated; otherwise, the data files are not useful. Thus, to
update data in the file, we need to update the data files with latest information. To update a
particular record of the data file, the data may be stored anywhere in the file; it is necessary to
obtain the location (in terms of byte number) at which the data object is stored.

The sizeof() operator determines the size of the object. Consider the following statements:

(a) int size = sizeof(o);

Here, o is an object, and size is an integer variable. The sizeof() operator returns the size
of the object o in bytes, and it is stored in the variable size. Here, one object is equal to one
record.

The position of the nth record or object can be obtained using the following statement:

(b) int p = (n-1 * size);

Here, p is the exact byte number of the object that is to be updated; n is the number of the object;
and size is the size in bytes of an individual object (record).

Suppose we want to update the fifth record. The size of the individual object is 26.

(c) p = (5-1*26) i.e. p = 104

Thus, the fifth object is stored in a series of bytes from 105 to 130. Using seekg() and
seekp() functions, we can set the file pointer at that position.

Unit 4 Applications with Files, Templates

41
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

16.19 Write a program to create a text file. Add and modify records in the text file. The
record should contain name, age, and height of a boy.

#include<stdio.h>

#include<process.h>

#include<fstream.h>

#include<conio.h>

class boys

{

char name [20];

int age;

float height;

public:

void input()

{

cout<< “Name:”; cin>>name;

cout<< “Age:”; cin>>age;

cout<< “Height:”; cin>>height;

}

void show (int r)

{

cout<<“\n”<<r<<“\t”<<name<<“\t”<<age <<“\t”<<height; }

};

Unit 4 Applications with Files, Templates

42
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

boys b[3];

fstream out;

void main()

{

clrscr();

void menu (void);

out.open (“boys.doc”, ios::in | ios::out | ios::noreplace);

menu();

}

void menu(void)

{

void get(void);

void put(void);

void update(void);

int x;

clrscr();

cout<<“\n Use UP arrow key for selection”;

char ch=‘ ’;

gotoxy(1,3);

printf (“ADD()”);

gotoxy(1,4);

printf (“ALTER()”);

gotoxy(1,5);

Unit 4 Applications with Files, Templates

43
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

printf (“EXIT()”);

x=3;

gotoxy(7,x);

printf (“*”);

while (ch!=13)

{

ch=getch();

if (ch==72)

{

if (x>4)

{

gotoxy(7,x);

printf (“ ”);

x=2;

}

gotoxy(7,x);

printf (“ ”);

gotoxy(7,++x);

printf (“*”);

}

}

switch(x)

{

Unit 4 Applications with Files, Templates

44
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

case 3 : get(); put(); getche(); break;

case 4 : put(); update(); put(); getche(); break;

default : exit(1);

}

menu();

}

void get()

{

cout<<“\n\n\n\n Enter following information:\n”;

for (int i=0;i<3;i++)

{

 b[i].input();

out.write ((char*) & b[i],sizeof(b[i]));

}

}

void put()

{

out.seekg(0,ios::beg);

cout<<“\n\n\n Entered information \n”;

cout<<“Sr.no Name Age Height”;

for (int i=0;i<3;i++)

{

out.read((char *) & b[i],

Unit 4 Applications with Files, Templates

45
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

sizeof(b[i]));

b[i].show(i+1);

}

}

void update()

{

int r, s=sizeof(b[0]);

out.seekg(0,ios::beg);

cout<<“\n”<<“Enter record no. to update:”;

cin>>r;

r=(r-1)*s;

out.seekg(r,ios::beg);

b[0].input();

out.write ((char*) & b[0],sizeof(b[0]));

put();

}

OUTPUT

Use UP arrow key for selection

ADD (*)

ALTER()

EXIT()

Unit 4 Applications with Files, Templates

46
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Enter following information :

Name : Sachin

Age : 28

Height : 5.4

Name : Rahul

Age : 28

Height : 5.5

Name : SauravAge : 29

Height : 5.4

Entered information

Sr.no Name Age Height

1 Sachin 28 5.4

2 Rahul 28 5.5

3 Saurav 29 5.4

Explanation: In the above program, the class boys contains the data member’s name, age,
and height. The class boys also contains the member functions input() and show(). The
input() function is used to read data, and the show() function displays data on the screen.

After class definition and before the main() function array of objects, b[3] and fstream
object out are declared. They are declared before main() for global access. The file
boys.doc is opened in the input and output modes to perform both read and write operations.

The menu() function displays the menu on the screen. The menu items can be selected using
the up arrow key. Hit enter to start the operation. There are another three user-defined functions.
They are get(), put(), and update(). The get() function calls the member function
input() to read data through the keyboard. The get() function writes the data using the
write() function. The put() function calls the member function show(). The put()
function calls the member function show(). The put() function reads the data from the file
using the read() function.

Unit 4 Applications with Files, Templates

47
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

The update() function is used to modify the previous record. The seekg() function sets the
file pointer at the beginning of the file. The sizeof() operator determines the size of the
object and stores it in the variable s.

16.12 ERROR HANDLING FUNCTIONS

Until now, we have performed the file operation without any knowledge of the failure or success
of the function open() that opens the file. There are many reasons; they may result in errors
during read/write operations of the program.

9. An attempt to read a file that does not exist
10. The file name specified for opening a new file may already exist
11. An attempt to read the contents of a file when the file pointer is at the end of the file
12. Insufficient disk space
13. Invalid file name specified by the programmer
14. An effort to write data to the file that is opened in the read-only mode
15. A file opened may be already opened by another program
16. An attempt to open the read-only file for writing operation
17. Device error

The stream state member from the class ios receives values from the status bit of the
active file. The class ios also contains many different member functions. These functions read
the status bit of the file where an error occurred during program execution are stored. These
functions are depicted in Table 16.5, and various status bits are described in Table 16.4.

All streams such as ofstream, ifstream, and fstream contain the state connected with
them. Faults and illegal conditions are managed (controlled) by setting and checking the state
properly. Figure 16.13 describes it more clearly.

Fig. 16.13 Status bits

Table 16.4 Status Bits

Unit 4 Applications with Files, Templates

48
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

eofbit End of file encountered. 0x01
failbit Operation unsuccessful 0x02
badbit Illegal operation due to wrong size of buffer 0x04
hardfail Critical error 0x08

Table 16.5 Error trapping functions

Functions Working and return value
fail() Returns non-zero value if an operation is unsuccessful. This is carried out by reading

the bits ios::failbit, ios:: badbit, and ios::hardfail of
ios::state.

eof() Returns non-zero value when the end of the file is detected; otherwise, it returns zero.
The ios::eofbit is checked.

bad() Returns non-zero value when an error is found in the operation. The ios::badbit
is checked.

good() Returns non-zero value if no error occurred during the file operation, that is, no status
bits were set. This also indicates that the above functions are false. When this
function returns true, we can proceed with the file operation.

rdstate() Returns the stream state. It returns the value of various bits of the ios::state.

The following examples illustrate the techniques of error checking:

1. An attempt to open a non-existent file for reading

ifstream in(data.txt”);

if (!in){ cout<< File not found”; }

In the above format, an attempt is made to open a file for reading. If the file already
exists, it will be opened; otherwise, the operation fails. Thus, by checking the value of the
object in, we can confirm the failure or success of the operation and according to this,
further processing can be decided.

2. An attempt to open a read-only file for writing

ofstream out(data.txt”);

if (!out)

Unit 4 Applications with Files, Templates

49
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<Unable to open file”;

else

cout<<“File opened”;

Suppose the data.txt file is protected (marked read only) or used by another application in
a multitasking operating environment. If the same file is opened in the write mode as
shown above, the operation fails. By checking the value of the object out with the if()
statement, we can catch the error and transfer the program control to a suitable sub-
routine.

3. Checking end of file

ifstream in(data.txt”);

while (!in.eof())

{

// read data from file

// display on screen

}

We may seek to open an existing file and read its contents. After opening a file in the
read mode, it is necessary to read the characters from the file using an appropriate
function (read() or get()). While reading a file, the get pointer is advanced to the
successive characters, and the same process can be repeated using loops. The compiler
cannot determine the end of the file. The eof() function determines the end of the file.
Thus, by checking the value of the eof() function, we can determine the end of the file.
In addition, by checking the value of the object, the end of the file is determined. Such
conditions should be placed in the while loop parentheses. While reading the file, use
only while or for loop.

4. Illegal file name

ifstream in(“*+**”);

while (!in.eof())

Unit 4 Applications with Files, Templates

50
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

{

// read data from file

// display on screen

}

While performing a file operation, it is the user’s responsibility to specify the correct file
name. If an illegal file name is specified by the user, the file operation fails. In the above
format, “*+**” is given as a file name that is invalid.

5. Operation with unopened file

ifstream in(“DATA”);

while (!in.eof())

{

// read data from file

// display on screen

}

Suppose the “DATA” file does not exist and an attempt is made to open it for reading.
Any operation applied with this file will be of no use. Hence, while performing a file
operation, first we have to check whether the file is successfully opened or not. After the
confirmation, we can proceed to the next step.

Programs referred to in the above discussion are explained below.

16.20 Write a program to detect whether the file is opened successfully or not.

#include<fstream.h>

#include<constream.h>

Unit 4 Applications with Files, Templates

51
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

#include<string.h>

ifstream in; // Global object

void main()

{

clrscr();

void show (void);

in.open(“dat”) ;

char c;

if (in!=0) show();

else

cout<<“\n File not found”;

}

void show()

{

char c;

cout<<“\n Contents of file:”;

while (in)

{

in.get(c);

cout<<c;

}

}

Unit 4 Applications with Files, Templates

52
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

OUTPUT

File not found

Explanation: In the above program, the object in of the ifstream class is declared globally. It
can be accessed by any normal function. In the main() function, in is the object used for
opening the file. If the open() function fails to open the file, it returns a zero; otherwise, it
returns a non-zero value. The if statement checks the value of the object in, and if it is a non-
zero show() function, it is invoked; otherwise, “File not found” message is displayed. The
show() function reads the file and displays the contents on the screen. In the above program,
the open() function tries to open “dat” file, which does not exist. Hence, the output is “File not
found.” If the specified file exists, the contents of the file will be displayed.

16.21 Write a program to display status of various errors trapping functions.

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

ifstream in;

in.open (“text.txt”, ios::nocreate);

if (!in)

cout<<“\n File not found”;

else

Unit 4 Applications with Files, Templates

53
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<“\nFile=”<<in;

cout<<“\nError state=”<<in.rdstate();

cout<<“\ngood()=”<<in.good();

cout<<“\neof()=”<<in.eof();

cout<<“\nfail()=”<<in.fail();

cout<<“\nbad()=”<<in.bad();

in.close();

}

OUTPUT

File not found

Error state = 4

good() = 0

eof() = 0

fail() = 4

bad() = 4

Explanation: In the above program, an attempt is made to open a non-existent file. The if
statement checks the value of the object in. The specified file does not exist; hence, it displays
the message “File not found.” The program also displays the values of various bits using the
functions good(), eof(), bad(), fail(), and rdstate() error trapping functions. For
more information about these functions, please refer Table 16.4.

16.13 COMMAND-LINE ARGUMENTS

An executable program that performs a specific task for the operating system is called a
command. The commands are issued from the command prompt of the operating system. Some

Unit 4 Applications with Files, Templates

54
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

arguments are associated with the commands; hence these arguments are called command-
line arguments. These associated arguments are passed to programs.

Similar to C, in C++, every program starts with a main() function, and this function marks the
beginning of the program. We have not provided any arguments so far in the main() function.
Here, we can make arguments in the main function as in other functions. The main() function
can receive two arguments, and they are (1) argc (argument counter) and (2) argv
(argument vector). The first argument contains the number of arguments, and the second
argument is an array of char pointers. The *argv points to the command-line arguments. The
size of the array is equal to the value counted by the argc. The information contained in the
command line is passed on to the program through these arguments when the main() is called
up by the system.

1. Argument argc:_The argument argc counts the total number of arguments passed from
command prompt. It returns a value that is equal to the total number of arguments passed
through the main().

2. Argument argv:_It is a pointer to an array of character strings that contains names of
arguments. Each word is an argument.

Syntax - main (int argc, char * argv[]);

Example - ren file1 file2.

Here, file1 and file2 are arguments, and copy is a command. The first argument is
always an executable program followed by associated arguments. If you do not specify
the argument, the first program name itself is an argument but the program will not run
properly and will flag an error. The contents of argv[] would be as follows:

argv [0] → ren

argv [1] → file1

argv [2] → file2

16.22 Write a program to simulate rename command using command line arguments.

#include<stdio.h>

Unit 4 Applications with Files, Templates

55
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

#include<fstream.h>

#include<conio.h>

#include<process.h>

main(int argc, char *argv[])

{

fstream out;

ifstream in;

if (argc<3)

{

cout<<“Insufficient Arguments”;

exit(1);

}

in.open(argv[1],ios::in | ios::nocreate);

if (in.fail())

{

cout<<“\nFile Not Found”;

exit(0);

}

in.close();

out.open(argv[2],ios::in | ios::nocreate);

if (out.fail())

{ rename(argv[1],argv[2]); }

Unit 4 Applications with Files, Templates

56
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

else

cout<<“\nDuplicate file name or file is in use.”;

return 0;

}

Explanation: In the above program, the main() receives two file names. The existence of the
file can be checked by opening it in the read mode. If the file does not exist, the program is
terminated. On the other hand, if the second file exists, the renaming operation cannot be
performed. The renaming operation is carried out only when the first file exists and the second
file does not exist. Make exe file of this program and use it on the command prompt.

16.14 STRSTREAMS

ostrstream

The strstream class is derived from the istrstream and ostrstream classes. The
strstream class works with the memory. Using the object of the ostrstream class,
different types of data values can be stored in an array.

16.23 Write a program to demonstrate use of ostrstreams object.

#include<strstream.h>

#include<iomanip.h>

#include<conio.h>

main()

{

clrscr();

char h=‘C’;

int j=451;

Unit 4 Applications with Files, Templates

57
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

float PI=3.14152;

char txt[]=”applications”;

char buff[70];

ostrstream o (buff,70);

o<<endl << setw(9)<<“h=”<<h<<endl <<setw(9)<<“j=”<<oct<<j<<endl

<<setw(10)<<“PI=”<< setiosflags(ios::fixed)<<PI<<endl<<setw(11)

<<“txt=”<<txt <<ends;

cout<<o.rdbuf();

return 0;

}

OUTPUT

h=C

j=703

PI=3.14152

txt= applications

Explanation: The strstream deals with the memory. If we want to pick characters from an
strstream or we want to add characters into the strstream, this can be done by creating
istrstream and ostrstream objects. When the object o is created, the constructor of the
ostrstream is executed. Once an object of the ostrstream is created, we can assign any
formatted text to the array associated with it. The statement cout<<o.rdbuf() displays the
formatted information on the screen.

istrstream

It is one of the base classes of the strstream class. Using the object of the istrstream
class, data can be extracted from an array. Suppose a character array contains numbers and

Unit 4 Applications with Files, Templates

58
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

characters. You can extract a number from an array and assign it to an integer variable.
Similarly, other values can be extracted from an array. The following program illustrates this:

16.24 Write a program to demonstrate the use of istrstream.

#include<strstream.h>

#include<conio.h>

main()

{

clrscr();

char *book;

int pages;

float price;

char *text=”550 175.75 C++”;

istrstream o(text);

o>>pages>>price>>book;

cout<<endl <<pages <<endl <<price<<endl<book;

cout<<o.rdbuf();

return 0;

}

OUTPUT

Unit 4 Applications with Files, Templates

59
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

550

175.75

C++

Explanation: The istrstreams is the opposite of the strstream. It picks different types
of data from an array. In the above program, a character pointer text contains the data of
integer, float, and character type. Using the object of the istrstreams class, we
can separate the contents and store them in appropriate variables. The *book pointer variable
displays a string. The remaining contents are displayed by the function rdbuf().

16.15 SENDING OUTPUT TO DEVICES

It is also possible to send information of files directly to devices such as a printer or monitor.
Table 16.6 describes various devices along with their names and descriptions. The following
program illustrates the use of such devices in the program:

Table 16.6 Standard Devices

Device Name Description
CON Console (monitor screen)
COM1 or AUX Serial port – I
COM2 Serial port – II
LPT1 OR PRN Parallel printer – I
LPT2 Parallel printer – II
LPT3 Parallel printer – III
NUL Dummy device

16.25 Write a program to read a file and sent data to the printer.

#include<fstream.h>

#include<iostream.h>

#include<conio.h>

Unit 4 Applications with Files, Templates

60
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

#include<process.h>

#define eject out.put(‘\x0C’);

void main()

{

clrscr();

char h;

char name[20];

cout<<“Enter file name:”;

cin>> name;

ifstream in (name);

if (!in)

{

cerr <<endl<<“File opening error”;

_cexit();

}

ofstream out (“LPT1”);

if(!out)

{

cerr <<endl<<“device opening error”;

_cexit();

}

while (in.get(h)!=0)

Unit 4 Applications with Files, Templates

61
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

out.put(h);

eject;

}

Explanation: In the above program, the file name is entered through the keyboard, and it is
opened for reading purpose. The ifstream object in opens the file. The ofstream object
out activates the printer. The if statements check both the objects for detecting operation
status, that is, whether the operations have failed or are successful. The while loop reads data
from the file and using the put() statement, it passes it to the devices associated with the object
out. In this program, the data read are passed to the printer. The macro eject defined at the
beginning of the program advances the page of the printer. In case the printer is not attached, the
message displayed will be as given below.

Error Message

System Message

Error accessing LPT1 device

» Retry « Cancel

The user can select retry if he or she had attached the printer; otherwise, by selecting
cancel, the operation can be cancelled.

16.16 MORE PROGRAMS

16.26 Write a program to copy contents of one file to another file.

#include<fstream.h>

#include<conio.h>

#include<process.h>

main()

{

Unit 4 Applications with Files, Templates

62
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

clrscr();

char s[12],t[12],c;

fstream out;

ifstream in;

cout<<“\n Enter a Source file name:”;

cin>>s;

cout<<“\n Enter a target file name:”;

cin >>t;

in.open(s,ios::in | ios::nocreate);

if (in.fail())

{

cout<<“\nFile “<<s <<“ Not Found”;

exit(1);

}

out.open(t,ios::out | ios::nocreate);

if (out.fail())

{

out.open(t,ios::out);

while (in.eof()==0)

{

in.get(c);

out.put(c);

}

Unit 4 Applications with Files, Templates

63
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

}

else

cout<<“\n Target file already exist.”;

in.close();

out.close();

return 0;

}

OUTPUT

Enter a Source file name : DATA

Enter a target file name : TEXT

Explanation: In the above program, the user enters source and target file names. The
existence of the files is checked. In case the source file is absent and the target file is
already present, the copying of data will not take place. Appropriate messages are displayed
when the file names are not properly entered.

The target file is opened in read and nocreate mode. The nocreate flag prevents the
opening of a new file if the file is absent. If it is unsuccessful, then the open() statement within
the if statement opens the file for writing. The while loop executes the function till the file
pointer reaches the end of the source file. The get() statement reads data from the source file,
and the put() statement writes the read data to the target file. Thus, the copying of data is
carried out. After termination of the while loop, both the files are closed using close()
functions.

16.27 Write a program to copy content of one file in another file in reverse order. Display
the contents of the screen.

#include<fstream.h>

Unit 4 Applications with Files, Templates

64
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

#include<conio.h>

#include<process.h>

main()

{

clrscr();

char s[12],t[12],c;

fstream out;

ifstream in;

cout<<“\n Enter a Source file name:”;

cin>>s;

cout<<“\n Enter a target file name:”;

cin >>t;

in.open(s,ios::in); //| ios::nocreate);

if (in.fail())

{

cout<<“\nFile”<<s <<“ Not Found”;

exit(1);

}

else

in.seekg(0,ios::end);

out.open(t,ios::out | ios::nocreate);

int b;

Unit 4 Applications with Files, Templates

65
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

if (out.fail())

{

out.open(t,ios::out);

in.seekg(0,ios::end);

b=in.tellg();

for (int i=1;i<=b;i++)

{

in.seekg(-i,ios::end);

in.get(c);

out.put(c);

cout<<c;

}

}

else

cout<<“\nTarget file alredy exist.”;

in.close();

out.close();

return 0;

}

OUTPUT

Unit 4 Applications with Files, Templates

66
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Enter a Source file name : cpp

Enter a target file name : cp2

GnimmargorP detneirO tcejbO

Explanation: In the above program, source and target file names are entered. The content
of the source file is copied to the target file in reverse order. The source file is opened for
reading, and the target file is opened for writing. Using the tellg() function, the size of the
source file is obtained and stored in the variable b. The for loop executes from 1 to b (size
of source file). The seekg() function moves the get file pointer in the reverse order, that is,
from end to top. The argument –i specifies the number of bytes to be read from the end of the
file. The character read by the get() function is written to the target file by the put()
function. The cout() statement displays the contents of the variable c on the screen.

16.28 Write a program to open a file in read and write mode. Write data to the file and
read from it.

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

ofstream out (“data.txt”); // creates file for writting

char name[]=”SANJAY”;

int age=25;

float ht=4.5;

out <<name<<“\t”<<age<<“\t”<<ht; // writes data to the data.txt

out.close(); // closes file

Unit 4 Applications with Files, Templates

67
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

ifstream in (“data.txt”); // opens file for reading

in>>name >>age>>ht; // reads data from file and assigns to
variables

cout<<endl<<“Name:”<<name; // display data on the screen

cout<<endl<<“Age:”<<age;

cout<<endl<<“Height:”<<ht;

}

OUTPUT

Name : SANJAY

Age : 25

Height : 4.5

Explanation: In the above program, the file “data.txt” is opened in the write mode. The
values of the variable’s name, age, and ht are written to the file. The file is closed using the
close() function.

Again, the same file is opened in the read mode. The data read are assigned to respective
variables and displayed on the screen using the cout() statement.

16.29 Write a program to write data to the file in string format also read and display the
data in the same fashion.

#include<fstream.h>

#include<conio.h>

Unit 4 Applications with Files, Templates

68
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

void main()

{

clrscr();

char text[100];

ofstream out (“data.txt”);

out<<“ Programming with ANSI and Turbo C”;

out<<“\n Teaches you C with practical programs”;

out.close();

ifstream in (“data.txt”);

while (!in.eof())

{

in.getline(text,100);

cout<<endl<<text;

}

}

OUTPUT

Programming with ANSI and Turbo C

Teaches you C with practical programs

Explanation: This program is similar to the previous one. Here, a string is written to the file.
Using the getline() function, the string is read from the file and displayed. As soon as the
end of the file is detected, the while loop terminates.

Unit 4 Applications with Files, Templates

69
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

16.30 Write a program to copy contents of one file to another file. Use rdbuf() function.

#include<fstream.h>

#include<conio.h>

void main()

{

clrscr();

char sfile[20], dfile[20];

cout<<“\nEnter source file:”;

cin>>sfile;

cout<<“\nEnter destination file:”;

cin>>dfile;

ifstream in(sfile);

ofstream out(dfile);

out<<in.rdbuf();

in.close();

out.close();

}

OUTPUT

Enter source file : data.txt

Unit 4 Applications with Files, Templates

70
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Enter destination file : c.txt

Explanation: In the above program, two character arrays sfile [20] and dfile [20] are
declared to hold source and destination file names, respectively. The rdbuf() copies entire the
source file to the target file.

16.31 Write a program to display strings and their addresses.

#include<strstream.h>

#include<conio.h>

main()

{

clrscr();

char s[]=”Sunday”;

char *r=”Monday”;

cout<<“Strings”<<endl;

cout<<s <<endl;

cout<<r <<endl;

cout<<endl<<“Addresses”<<endl;

cout<<&s<<endl; // c style

cout<<(void*) r<<endl;

cout<<(unsigned)&s<<endl;

return 0;

}

Unit 4 Applications with Files, Templates

71
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

OUTPUT

Strings

Sunday

Monday

Addresses

0x8f9cffee

0x8f9c00b1

65518

Explanation: In the above program, character array s[] and character pointer r are initialized
with strings. The strings and their memory addresses are displayed using cout() statements.
The address can be displayed using the & operator in traditional C style. We can also display the
address as per the statement cout<<(void*) r. The address is converted from char* into
void*. The statement cout<<(unsigned)&s converts the address into an unsigned integer
and displays it.

16.32 Write a program to show errors occurring during file opening operations.

#include<fstream.h>

#include<conio.h>

#include<process.h>

void main()

{

Unit 4 Applications with Files, Templates

72
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

clrscr();

void errors (ofstream &);

ofstream f;

f.open (“data.txt”,ios::noreplace);

if (!f) errors(f);

else f <<“Hope is a walking dream”;

f.close();

}

void errors (ofstream &f)

{

cout<<endl<<“File opening errors”;

cout<<endl <<“Error state=”<<f.rdstate();

cout<<endl<<“fail()=”<<f.fail();

cout<<endl<<“eof()=”<<f.eof();

cout<<endl<<“bad()=”<<f.bad();

cout<<endl<<“good()=”<<f.good();

_cexit();

}

OUTPUT

File opening errors

Error state = 4

Unit 4 Applications with Files, Templates

73
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

fail()=4

eof() = 0

bad()=4

good()=0

Explanation: In the above program, the file data.txt is in the write mode. If the file opening
operation fails, the function error() is executed. The if statement checks the value of the
object f, and if it is zero, then the function errors() are invoked, which display the errors.
The error states displayed in the output are illustrated in Table 16.7:

Table 16.7 Return values of functions

rdstate() (error
state = 4)

The rdstate() function gives the value 4, and it points that the file operation
was unsuccessful.

fail()=4 & bad()=4 These functions display a non-zero value, and this is due to an error that is
generated during the operation.

eof() = 0 This function returns zero, because the file pointer is not at the end of the
file.

good() = 0 This function returns zero, because no bit sets.

16.33 Write a program to enter numbers using command line arguments. Calculate the
product of all the numbers.

#include<strstream.h>

#include<conio.h>

void main (int argc, char *argv[])

{

int k=1;

Unit 4 Applications with Files, Templates

74
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

long n,s=1;

if (argc<2)

{

cout<<“ Enter numbers ”;

return ;

}

while (--argc)

{

istrstream value (argv[k]);

value>>n;

s*=n;

k++;

}

cout<<endl<<“ Multiplication of entered numbers:”<<s<<endl;

}

OUTPUT

C:\tc3>cmd 4 4 4

Multiplication of entered numbers : 64

C:\tc3>cmd 45545 2

Multiplication of entered numbers : 91090

Unit 4 Applications with Files, Templates

75
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Explanation: The above program can be executed on command prompt by creating its exe file.
The number of arguments entered by the user is checked by the first if statement; if arguments
are less than two, the message displayed will be “Enter numbers.”

If the user enters numbers followed by the file name, the product of all the numbers is calculated
and displayed. The object value is the object of the class istrstream, and it is connected to
the buffer. Consider the statement value>>n; here, the object value takes data from the
buffer and assigns it to the variable n.

SUMMARY

1. Nowadays, a huge amount of data is processed in the computer networking. The
information is uploaded or downloaded from the desktop computer. The information
transfer in computer networking in day-today life is done in the form of files. The data
are saved in the file on the disk. The file is an accumulation of data stored on the disk.

2. A stream is nothing but the flow of data. In the object-oriented programming, the streams
are controlled using the classes.

3. The istream and ostream classes control the input and output functions,
respectively.

4. The iostream class is also a derived class. It is derived from the istream and
ostream classes. There are another three useful derived classes. They are
istream_withassign, ostream_withassign, and
iostream_withassign, and they are derived from istream, ostream, and
iostream, respectively.

5. filebuf accomplishes input and output operations with the files. The fstreambase
acts as a base class for fstream, ifstream, and ofstream. The ifstream class
is derived from the fstreambase and istream classes by multiple inheritance. It can
access the member functions such as get(), getline(), seekg(), tellg(), and
read(). The ofstream class is derived from the fstreambase and ostream
classes. It can access the member functions such as put(), seekp(), write(), and
tellp(). The fstream class allows for simultaneous input and output on a
filebuf. The member function of the istream and ostream in the base classes
starts the input and output, respectively.

6. The following two methods are used for the opening of a file: (A) Constructor of the
class; (b) Member function open() of the class.

7. The class ofstream creates output stream objects, and the class ifstream creates
input stream objects.

8. The close() member function closes the file.
9. The open() function uses the same stream object. The open() function has two

arguments. The first is the file name, and the second is the mode.
10. When the end of the file is detected, the process of reading data can be easily terminated.

The eof() function() is used for this purpose. The eof() stands for the end of
the file. It is an instruction given to the program by the operating system that the end of
the file is reached. The eof() function returns one when the end of the file is detected.

Unit 4 Applications with Files, Templates

76
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

11. The mode ios::out and ios::trunc are near about same. The ios:: app lets
the user add data at the end of the file, whereas ios: ate allows the user to add or
update data anywhere in the file.

12. The seekg() function shifts the associated file’s input (get) file pointer. The seekp()
function shifts the associated file’s output (put) file pointer.

13. seekg() -- Shifts input (get) pointer to a given location
14. seekp() -- Shifts output (put) pointer to a given location
15. tellg() -- Provides the present position of the input pointer
16. tellp() -- Provides the present position of the output pointer
17. The put() and get() functions are used to read or write a single character, whereas

the write() and read() functions are used to read or write blocks of binary data.
18. The fail(), eof(), bad(), and good() are error trapping functions.
19. An executable program that performs a specific task for the operating system is called a

command. The commands are issued from the command prompt of the operating system.
Some arguments are to be associated with the commands; hence, these arguments are
called command-line arguments.

20. Syntax - main (int argc, char * argv[]);

EXERCISES

(A) Answer the following questions

1. What is a stream?
2. What is a file?
3. Describe the different classes derived from ios that control the disk I/O operations.
4. Describe the two methods of opening a file.
5. Explain the detection of the end of a file with the function eof().
6. Describe the syntax of the open() function with its arguments.
7. What are the different types of file opening modes? List their names along with their

meanings.
8. Describe file manipulators with their syntaxes.
9. Describe the various error trapping functions.
10. What are the possible reasons for the failure of the open() function?
11. What are command-line arguments?
12. Explain the use of the NOT operator and eof() function.
13. Explain sequential and random file operations.
14. How would you write data in a file in binary format?
15. What are the limitations of using the put() and get() functions?
16. Explain the uses of the ostrstream and istrstream classes.
17. Explain the differences between binary and ASCII files.

(B) Answer the following by selecting the appropriate option

1. The eof() stands for

Unit 4 Applications with Files, Templates

77
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

1. end of the file
2. error opening the file
3. error of the file
4. none of the above

2. Command-line arguments are used with function
1. main()
2. member function
3. with all functions
4. none of the above

3. The statement in.seekg(0,ios::end) sets the file pointer
1. at the end of the file

Unit 4 Applications with Files, Templates

78
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Templates

Templates are the foundation of generic programming, which involves writing code in a

way that is independent of any particular type.

A template is a technique that allows a single function or class to work with different data

types. Using a template, we can create a single function or a class that can process any type of

data; that is, the formal arguments of a template are of template (generic) type. They can accept

data of any type, such as int, float, and long. Thus, a single function or class can be used to

accept values of a different data type. In general templates are used to create a family of classes

or functions.

Cass Templates

In order to declare a class of template type, the following syntax is used:

template < class T>
class name_of_class
{

// class data member and function
}

The first statement template < class T> tells the compiler that the following class

declaration can use the template data type. The T is a variable of template type that can be used

in the class to define a variable of template type. Both template and class are keywords. The <>

(angle bracket) is used to declare the variables of template type that can be used inside the class

to define the variables of template type. One or more variables can be declared separated by a

comma. Templates cannot be declared inside classes or inside functions. They should be global

and should not be local.

/*Write a C++ program to show values of different data types using overloaded
constructor. */

#include <iostream>
using namespace std;

class data
{

Unit 4 Applications with Files, Templates

79
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 public:
 data(char c)
 {
 cout<<" c="<<c <<"Size in bytes:"<<sizeof(c)<<endl;
 }
 data(int c)
 {
 cout<<" c="<<c <<"Size in bytes:"<<sizeof(c)<<endl;
 }
 data(double c)
 {
 cout<<" c="<<c <<"Size in bytes:"<<sizeof(c)<<endl;
 }
};
int main()
{
 data h('A'); // passes character type data
 data i(100); // passes integer type data
 data j(68.22); // passes double type data
 return 0;
}

Output:

 c=A Size in bytes:1
 c=100 Size in bytes:4

c=68.22 Size in bytes:8

Explanation: In the above program, the class data contains three overloaded one-argument

constructors. The constructor is overloaded for char, int, and double type. In function main(),

three objects h, i, and j are created, and the values passed are of different types. type. This

approach has the following disadvantages:

1. Re-defining the functions separately for each data type increases the source code and
requires more time.

2. The program size is increased. Hence, more disk space is occupied.
3. If the function contains a bug, it should be corrected in every function.

Unit 4 Applications with Files, Templates

80
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Fig. Working of non-template function

From the above program, it is clear that for each data type we need to define a separate

constructor function. According to data, type of argument passed respective constructor is

invoked. C++ provides templates to overcome such a problem and helps the programmer

develop a generic program. The same program is illustrated with the template as follows:

/* Write a C++ program to show values of different data types using constructor

and template. */

#include <iostream>
using namespace std;

template<class T>
class data
{
public:
 data (T c)
 {
 cout<<" c="<<c <<" Size in bytes:"<<sizeof(c)<<endl;
 }
};
int main()
{
 data <char> h('A');
 data <int> i(100); Output:

 data <float> j(3.12); c=A Size in bytes:1
return 0; c=100 Size in bytes:4

} c=3.12 Size in bytes:4

Unit 4 Applications with Files, Templates

81
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Explanation: In the above program, the constructor contains a variable of template T. The

template class variable can hold values of any data type. While declaring an object, the data type

name is given before the object. The variable of template type can accept the values of any data

type. Thus, the constructor displays the actual values passed.

 Figure shows the working of the program.

Function Templates

The declaration of a normal template function can be done in the following manner:

template < class T>
retun_type function_name (arguments)
{

// code
}

/* Write a C++ program to define normal template function.*/

#include <iostream>
using namespace std;

template<class T>
void display(T a, T b)
{
 cout<<a<<" | "<<b<<endl;
}
int main() {

 display(1,2);

Unit 4 Applications with Files, Templates

82
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 display("Hellow", "Suresh");
 display(1.5,20.5);
 return 0;

}

Output:
1 | 2
Hellow | Suresh
1.5 | 20.5

Explanation: Before the body of the function display(), the template argument T is declared. The
function display () has one argument T of template type. As explained earlier, the template type
variable can accept all types of data. Thus, the normal function show can be used to display
values of different data types. In main function, the display() functions are invoked with int,
string and double type of values being passed. The same is displayed in the output.

Example:

/* Write a C ++ program to create square() function using template. */

#include <iostream>
using namespace std;

template <class T>
T square(T a)
{
 return a*a;
}
int main() {
 cout<<square(4)<<endl;
 cout<<square<float>(2.2)<<endl;
 cout<<square<double>(2.2)<<endl; Output:

return 0; 16
} 4.84
 4.84

Working of Function Templates: In the last few examples, we have learned how to write a

function template that works with all data types. After compilation, the compiler cannot guess

with which type of data the template function will work. When the template function is called at

that moment, from the type of argument passed to the template function, the compiler identifies

the data type. Then, every argument of template type is replaced with the identified data type;

this process is called instantiating.

Unit 4 Applications with Files, Templates

83
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Class Templates with More Parameters

Similar to functions, classes can be declared to handle different data types. Such classes

are known as class templates. These classes are of generic type, and member functions of these

classes can operate on different data types. The class template may contain one or more

parameters of generic data type. The arguments are separated by commas with a template

declaration. The declaration is as follows:

template <class T1, class T2>
class name_of_ class
{

// class declarations and definitions
}

/* Write a C++ program to define a constructor with multiple template variables. */

#include <iostream>
using namespace std;
template<class T1, class T2>
class temp
{
 T1 a;
 T2 b;
public:
 temp(T1 x,T2 y)
 {
 a=x;
 b=y;
 }
 void display()
 {
 cout<<"A and B Values:"<<a<<"\t"<<b<<endl;
 }
};
int main() {
 temp<int,float> t1(5,6.5); Output:
 temp<float,float> t2(3.5,6.5); A and B Values: 5 6.5
 temp<char,float> t3('a',3.3); A and B Values: 3.5 6.5
 t1.display(); A and B Values: a 3.3
 t2.display();
 t3.display();
 return 0;
}

Unit 4 Applications with Files, Templates

84
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Member Function Templates

In the previous example, the template functions defined were inline, that is, they were

defined inside the class. It is also possible to define them outside the class. While defining them

outside, the function template should define the function, and the template classes are

parameterized by the type argument.

 /*Write a C++ program to define definition of member function template outside the class
and invoke the function.*/

template<class T>
class data
{
public:
 data (T c);
};
template<class T>
data<T>::data(T c)
{
 cout<<" c="<<c <<" Size in bytes:"<<sizeof(c)<<endl;
}
int main()
{
 data <char> h('A');
 data <int> i(100);
 data <double> j(3.12);
 return 0;
}

Output:

c=A Size in bytes:1
c=100 Size in bytes:4
c=3.12 Size in bytes:8

Explanation: In the above program, the constructor is defined outside the class. In such a case,
the member function should be preceded by the template name as per the following statements:

 template<class T>
data<T>::data (T c)

The first line defines the template, and the second line indicates the template class type T.

Unit 4 Applications with Files, Templates

85
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Function Templates with Different or Multiple Parameters

In some situations we may need to use more than one type parameter in a function

template. If that ever occurs, then declaring multiple type parameters is actually quite simple. All

you need to do is add the extra type to the template prefix, so it looks like this:

 template<class T1, class T2>
 retun_type function_name (T1 var1, T2 var2)
 {
 // some code in here...
 }
Example:

#include <iostream>
using namespace std;

template<class T>
void display(T a, T b)
{
 cout<<a<<" | "<<b<<endl;
}
template<class T,class T1>
void display(T a, T1 b)
{
 cout<<a<<" | "<<b<<endl;
}
int main() {

 display(1,2);
 display("Hellow", "Suresh");
 display(1.5,20.5);
 display("Suresh",1235);
 return 0;

}

Output:
1 | 2
Hellow | Suresh
1.5 | 20.5
Suresh | 1235

Unit 4 Applications with Files, Templates

86
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Overloading of Template Functions

A template function also supports the overloading mechanism. It can be overloaded by a

normal function or a template function. While invoking these functions, an error occurs if no

accurate match is met. No implicit conversion is carried out in the parameters of template

functions. The compiler observes the following rules for choosing an appropriate function when

the program contains overloaded functions:

1. Searches for an accurate match of functions; if found, it is invoked

2. Searches for a template function through which a function that can be invoked with an

accurate match can be generated; if found, it is invoked

3. Attempts a normal overloading declaration for the function

4. In case no match is found, an error will be reported

/* Write a C++ program to overload a template function.*/

#include<iostream.h>
template <class T>
void show(T c)
{

cout<<“\n Template variable c=”<<c;
}
void show (int f)
{

cout<<“\n Integer variable f=”<<f;
 }
 int main()
 {
 show(‘C’);
 show(50);
 show(50.25);
 return 0;
 }
Output:

 Template variable c=C

 Integer variable f=50

 Template variable c=50.25

Unit 4 Applications with Files, Templates

87
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Explanation: In the above program, the function show() is overloaded. One version contains
template arguments, and the other version contains integer variables. In main(), the show()
function is invoked thrice with char, int, and float values that are passed. The first call
executes the template version of the function show(), the second call executes the integer
version of the function show(), and the third call again invokes the template version of the
function show().

Recursion with Template Functions

Similar to normal function and member function, the template function also supports the

recursive execution of itself. The following program illustrates this:

 /*Write a C++ program to invoke template function recursively.*/

template <class T, class TT>
T number(T raised, TT exponent)
{
 if (exponent <1)
 return 1;
 else
 return raised * number(raised, exponent -1);
}
int main()
{
 // Testing integers
 cout << "Testing integers: 2 raised to 4 is " << number(2, 4) << endl;
 // Testing doubles
 cout << "Testing doubles: 5.5 raised to 2.2 is " << number(5.5, 2.2) << endl;
 // Testing a double and a integer
 cout << "Testing integers: 5.5 raised to 2 is " << number(5.5, 2) << endl;
 return 0;
}
Output:

Testing integers: 2 raised to 4’ is 16
Testing doubles: 5.5 raised to 2.2 is 30.25
Testing integers: 5.5 raised to 2 is 30.25

